ON HYPERSINGULAR INTEGRALS AND CERTAIN SPACES OF LOCALLY DIFFERENTIABLE FUNCTIONS

BY RICHARD L. WHEEDEN

1. **Introduction.** In this paper, we shall study relations between *pointwise* convergence of hypersingular integrals and *local* differential properties of functions. Our results will partly generalize a theorem of Calderón and Zygmund and an unpublished theorem of E. M. Stein.

We will use standard notation for points and functions in *n*-dimensional Euclidean space E^n , $n \ge 2$. If $f(x) \in L^p(E^n)$, $1 \le p < \infty$, set

$$\tilde{f}_{\varepsilon}(x) = \int_{|z| > \varepsilon} \left[f(x-z) - f(x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz$$

for $\varepsilon > 0$ and $0 < \alpha < 2$, where Ω is a bounded real-valued function homogeneous of degree zero which satisfies

(1.1)
$$\int_{\Sigma} z_j' \Omega(z') dz' = 0 \qquad (j = 1, \ldots, n)$$

for $1 \le \alpha < 2$. Here Σ denotes the unit sphere of points z' = z/|z|, $z \ne 0$.

If $\lim_{\varepsilon\to 0}\tilde{f}_{\varepsilon}(x)$ exists in some sense, we call it a hypersingular integral of f. If, for example, f satisfies the global differentiability condition $f \in L^p_\alpha = J^\alpha L^p$ (see [2]), the convergence of \tilde{f}_{ε} in various senses was studied in [8], [14] and [15]. Thus far, however, the convergence of \tilde{f}_{ε} for f satisfying a local differentiability condition has been studied for $n \ge 2$ only in case $\alpha = 1$. (See [5].)

Following [4], we say an $f \in L^p$, $1 \le p < \infty$, belongs to $t^p_{\alpha}(x_0)$ if there is a polynomial $P_{x_0}(z)$ of degree less than or equal to α such that

$$\left(\varepsilon^{-n}\int_{|z|\leq \delta}|f(x_0+z)-P_{x_0}(z)|^p\,dz\right)^{1/p}=o(\varepsilon^\alpha)$$

as $\epsilon \to 0$. We say $f \in T^p_\alpha(x_0)$ if there is a polynomial of degree strictly less than α such that

$$\left(\varepsilon^{-n}\int_{|z|<\varepsilon}|f(x_0+z)-P_{x_0}(z)|^p\ dz\right)^{1/p}=O(\varepsilon^a)$$

for $\varepsilon > 0$.

Given $0 < \alpha < 2$ let $\beta = [\alpha] + 1 - \alpha$, so that $\alpha + \beta = 1$ if $0 < \alpha < 1$ and $\alpha + \beta = 2$ if $1 \le \alpha < 2$. Roughly speaking, our main result is that for $f \in T^p_\alpha(x)$ the convergence

Received by the editors June 7, 1968 and, in revised form, June 19, 1969.

of $f_{\varepsilon}(x)$ is equivalent almost everywhere to the condition $J^{\beta}f \in T^{p}_{\alpha+\beta}(x)$. Calderón and Zygmund show in [4] (Theorems 4 and 5) that if $f \in T^{p}_{\alpha+\gamma}(x)$ for $x \in E$ then $J^{\gamma}f \in T^{p}_{\alpha+\gamma}(x)$ for almost every $x \in E$, except in the special case that $\alpha+\gamma$ is an integer but α and γ are not. This is precisely our case, however, and an example of the complications which may arise can be found in [16, pp. 136–138].

We shall prove the following results:

THEOREM 1. Given $0 < \alpha < 2$, let Ω be a bounded function homogeneous of degree zero which satisfies (1.1) when $1 \le \alpha < 2$. Let $f \in L^p$, $1 \le p < \infty$, $E \subseteq E^n$ and $\beta = [\alpha] + 1 - \alpha$. If $f \in T_a^p(x)$ for $x \in E$ and $J^{\beta}f \in T_{\alpha+\beta}^p(x)$ for $x \in E$ then

$$\lim_{\varepsilon \to 0} \int_{|z| > \varepsilon} \left[f(x - z) - f(x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz$$

exists and is finite for almost all $x \in E$.

Conversely,

THEOREM 2. Let $f \in L^p$, $1 \le p < \infty$, $E \subseteq E^n$, $0 < \alpha < 2$. Suppose $f \in T^p_\alpha(x)$ for $x \in E$ and each

$$\int_{|z| > \varepsilon} \left[f(x-z) - f(x) \right] \frac{\Omega_j(z)}{|z|^{n+\alpha}} dz$$

converges for $x \in E$, where $\{\Omega_j\}$ is a basis for the spherical harmonics of a fixed degree $m \ge 0$, $m \ne 1$ when $1 \le \alpha < 2$ and m = 0 when p = 1. Then with $\beta = [\alpha] + 1 - \alpha$, $J^{\beta} f \in T^{\alpha}_{p+\beta}(x)$ for almost all $x \in E$.

When $\alpha=1$, the hypothesis $f \in T_1^p(x)$ for $x \in E$ implies that $f \in t_1^p(x)$ and $J^1 f \in t_2^p(x)$ for almost all $x \in E(1)$ and Theorem 1 is a known result of Calderón and Zygmund [5]. Also, Theorem 2 for $\alpha=1$ is vacuous and a replacement result is the following.

THEOREM 3. Let $f \in L^p$, $1 \le p < \infty$, $E \subseteq E^n$. If

$$\left(\varepsilon^{-n}\int_{|z|<\varepsilon}|f(x+z)+f(x-z)-2f(x)|^p\ dz\right)^{1/p}=O(\varepsilon)$$

for $x \in E$ and each

$$\int_{|z|>\varepsilon} \left[f(x-z) - f(x) \right] \frac{\Omega_j(z)}{|z|^{n+1}} dz$$

converges for $x \in E$, where the Ω_j are as in Theorem 2, then $f \in t_1^p(x)$ for almost all $x \in E$.

Theorem 3 for $\Omega \equiv 1$ was proved independently by E. M. Stein. It turns out that for all $0 < \alpha < 2$ one can replace the condition $f \in T^p_{\alpha}(x)$ of Theorem 2 by an apparently weaker condition. See the remark at the end of §4.

⁽¹⁾ See Theorem 5 of [4]. Although Theorems 4 and 5 are stated for p > 1, it is not hard to see they remain true for p = 1 when, with the notation of [4], q = 1 and u > 0.

Although we stated our theorems for $n \ge 2$ they have analogues for n = 1 which are related to the results of [13]. In their present form, our results do not include those of Sagher [7] for hypersingular integrals with complex homogeneity.

We shall prove Theorem 1 in §2, Theorem 2 in §3 and Theorem 3 in §4. §4 also contains an apparent improvement of Theorem 2.

2. **Proof of Theorem 1.** We will use the method in [11] to prove Theorem 1. We need a long list of lemmas, and in order to shorten their presentation we will assume $1 < \alpha < 2$ whenever convenient. We also note that it suffices to prove Theorem 1 for p=1 since we may assume E is bounded and f has compact support and since the condition $f \in T^p_\alpha(x)$ for p>1 implies $f \in T^1_\alpha(x)$.

We recall that $f \in L^p_\alpha$, $1 \le p < \infty$, $\alpha > 0$, if $f = J^\alpha \phi = G_\alpha * \phi$ for $\phi \in L^p$ where G_α is a positive integrable function with the following properties (see e.g. [4]):

- (a) $\hat{G}_{\alpha}(x) = (1+|x|^2)^{-\alpha/2}$,
- (b) G_{α} is infinitely differentiable except at x=0 and for $x \neq 0$, $0 < \alpha < n$ and $|\nu| \ge 0$

$$|(\partial^{\nu}/\partial x^{\nu})G_{\alpha}(x)| \leq c_{\alpha,\nu}e^{-|x|}[1+|x|^{-n-|\nu|+\alpha}].$$

LEMMA 1. Let $f \in L^p_\alpha$ for some $0 < \alpha < 2$ and let Ω satisfy the hypothesis of Theorem 1. Then for $1 \le p < \infty$

$$\tilde{f}(x) = \lim_{\varepsilon \to 0} \int_{|z| > \varepsilon} \left[f(x-z) - f(x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz$$

exists and is finite for almost all x, and for $1 , the transformation <math>f \to \tilde{f}$ sends L^p_α boundedly into L^p .

For a proof, see [15].

LEMMA 2. Given $\lambda > 0$,

- (a) $|x|^{\lambda} = (1+|x|^2)^{\lambda/2} d\hat{\mu}(x)$,
- (b) $(1+|x|^2)^{\lambda/2} = |x|^{\lambda} d\hat{\sigma}(x) + d\hat{\tau}(x)$,

where $d\hat{\mu}$ is the sum of 1, a finite linear combination of terms \hat{G}_{2k} , $k=1,2,\ldots$, and the Fourier transform of a function with derivatives up to a preassigned order belonging to all L^p , $1 \le p \le \infty$, $d\hat{\sigma}$ is the sum of 1 and a finite linear combination of terms \hat{G}_{2k} , $k=1,2,\ldots$, and $d\hat{\tau}$ is the Fourier transform of a function with derivatives up to a preassigned order belonging to all L^p , $1 \le p \le \infty$.

Parts (a) and (b) of Lemma 2 are stated in [8]. The proof of the rest of the lemma is not difficult and we omit it.

LEMMA 3. Let $f \in L^1$, $1 < \alpha < 2$, $\alpha + \beta = 2$, $F = J^{\beta}f$. Then for almost all x,

(2.1)
$$f(x) = cF_{z}(x) + c_{\beta} \int [F_{\sigma}(x+z) - F(x)] \frac{dz}{|z|^{n+\beta}}$$

where $F_{\sigma} = F * d\sigma$, $F_{\tau} = F * d\tau$, $d\sigma$ and $d\tau$ being defined by Lemma 2 with $\lambda = \beta$.

The integral in (2.1) exists almost everywhere in the principal value sense by Lemma 1 since $F_{\sigma} \in L^{1}_{B}$. Moreover, by Lemma (1.6) of [14],

$$c_{\beta} \int_{|z| > \varepsilon} \left[F_{\sigma}(x+z) - F_{\sigma}(x) \right] \frac{dz}{|z|^{n+\beta}} - \int_{E^{n}} F_{\sigma}(x+z) [|z|^{\beta} e^{-\varepsilon|z|}]^{\hat{}} dz$$

tends to zero with ε for almost all x. Hence the right side of (2.1) is the limit almost everywhere of

$$\int_{E^n} F_{\tau}(x+z)[e^{-\varepsilon|z|}]^{\hat{}} dz + \int_{E^n} F_{\sigma}(x+z)[|z|^{\beta}e^{-\varepsilon|z|}]^{\hat{}} dz$$

$$= c \int_{\mathbb{R}^n} \hat{F}(z)[|z|^{\beta} d\hat{\sigma}(z) + d\hat{\tau}(z)]e^{i(x+z)}e^{-\varepsilon|z|} dz$$

$$= c \int_{\mathbb{R}^n} \hat{f}(z)e^{i(x+z)}e^{-\varepsilon|z|} dz$$

by Lemma 2(b) and the fact that $\hat{F}(z) = (1+|z|^2)^{-\beta/2}\hat{f}(z)$. The last integral is essentially the Poisson integral of f and converges to a constant times f almost everywhere.

LEMMA 4. If $f \in L^1$ and $\alpha > 0$ is not an integer then $J^{\alpha}f \in t^1_{\alpha}(x)$ for almost all x.

The proof of Lemma 4 is almost identical to that of Theorem 4 of [4]. Although the case p=1 is not considered there, the proof easily yields Lemma 4. (See also the proof of Lemma 4 of §3 below.)

LEMMA 5. Let $1 < \alpha < 2$ and v(x) and its first order derivatives be continuous and have compact support. For any j = 1, ..., n,

$$u(x) = \int_{\mathbb{F}^{n}} v(x-z) \, \frac{z'_{j}}{|z|^{n-(\alpha-1)}} \, dz$$

belongs to $T^1_{\alpha}(x)$ uniformly in x.

Proof. If $u_i = (\partial/\partial x_i)u$ then

$$u_{i}(x) = \int_{E^{n}} v_{i}(x-z) \frac{z'_{j}}{|z|^{n-(\alpha-1)}} dz$$

is continuous and

$$|u_{i}(x+y)-u_{i}(x)| \leq c \int \left| \frac{1}{|z+y|^{n-(\alpha-1)}} - \frac{1}{|z|^{n-(\alpha-1)}} \right| dz$$

$$+ c \int \frac{1}{|z|^{n-(\alpha-1)}} |(z+y)'_{j} - z'_{j}| dz.$$

Each integral is easily seen to be $O(|y|^{\alpha-1})$ and the lemma follows from Taylor's formula.

The remaining lemmas are taken from [4].

LEMMA 6. Let P be a closed subset of E^n and U be the neighborhood of P of all points whose distance from P is less than 1. Then there is a covering of U-P by nonoverlapping closed cubes K_m with $c^{-1} \le d_m/e_m \le c$, $0 < c < \infty$, where e_m is the edge length of K_m and d_m is the distance from K_m to P.

See Lemma (3.1) of [4].

LEMMA 7. Let P be a compact set and $\delta(x)$ be the distance from x to P, with $\delta(x) = 0$ for large x. Given $\lambda > 0$

(2.2)
$$\int_{\mathbb{R}^n} \frac{\delta^{\lambda}(x+z)}{|z|^{n+\lambda}} dz$$

is finite for almost all $x \in P$.

LEMMA 8. Let $F \in t^1_2(x)$ for $x \in E$, E a bounded measurable set. Given $\varepsilon > 0$ there is a closed set $P \subseteq E$, $|E-P| < \varepsilon$, and a decomposition F = G + H where G has two continuous derivatives and compact support, H(x) = 0 for $x \in P$ and

$$\int_{|z|<\varepsilon} |H(x+z)| \ dz \le M\varepsilon^{n+2}$$

uniformly for $x \in P$. Moreover, given $0 < \lambda \le 2$,

(2.3)
$$\int \frac{|H(z)|}{|x-z|^{n+\lambda}\delta(z)^{2-\lambda}} dz$$

is finite for almost all $x \in P$, $\delta(z)$ being the distance from z to P.

Integration in (2.3) is of course extended over the complement of P. Lemma 8 for $\lambda = 2$ is proved in [4, p. 189–190], and the proof for $0 < \lambda \le 2$ is similar.

LEMMA 9. Let $h \in T^1_\alpha(x)$, $1 < \alpha < 2$, uniformly for x in a closed set P, i.e.,

$$\varepsilon^{-n} \int_{|z| \le \varepsilon} |h(x+z) - h(x)| - \sum_{j=1}^{\infty} z_j h_j(x)| dz \le M \varepsilon^{\alpha}$$

for $x \in P$. Then for x and x + z in P,

$$|h(x+z)-h(x)-\sum z_jh_j(x)|\leq M'|z|^{\alpha}$$

and

$$|h_j(x+z)-h_j(x)| \leq M'|z|^{\alpha-1} \qquad (j=1,\ldots,n).$$

We can now prove Theorem 1 for $1 < \alpha < 2$. Let f and $F = J^{\beta}f$, $\beta = 2 - \alpha$, satisfy the hypothesis of Theorem 1 for p = 1. Let F_{σ} and F_{τ} be defined as in Lemma 3. Since $F \in L^1$ and F_{τ} is a convolution of F with a function with bounded derivatives

up to a preassigned order (Lemma 2), we may assume F_{τ} has bounded continuous second order derivatives everywhere. In particular,

(2.4)
$$\left| F_{\tau}(x-z) - F_{\tau}(x) + \sum_{j} z_{j} \left(\frac{\partial F_{\tau}}{\partial x_{j}} \right) (x) \right| \leq M|z|^{2},$$

for all x and z, $M < \infty$. Since $1 < \alpha < 2$,

$$\int \left[F_{t}(x-z) - F_{t}(x) + \sum_{j} z_{j} \left(\frac{\partial F_{t}}{\partial x_{j}} \right) (x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz$$

converges absolutely everywhere. Since Ω is orthogonal to polynomials of degree 1,

$$\int_{|z|>\varepsilon} \left[F_{t}(x-z) - F_{t}(x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz$$

converges everywhere as $\varepsilon \to 0$.

Hence, applying (2.1), it remains to prove the conclusion of Theorem 1 with f replaced by

(2.5)
$$p.v. \int [F_{\sigma}(x+z) - F_{\sigma}(x)] \frac{dz}{|z|^{n+\beta}}.$$

By (2.4) $F_{\tau} \in T_{\alpha}^{1}(x)$ everywhere and by (2.1) again, the same is true for $x \in E$ of (2.5). By Lemma 2, F_{σ} is the sum of F and a finite linear combination of terms $J^{2k}F$, $k \ge 1$. It follows that $F_{\sigma} \in t_{2}^{1}(x)$ for almost all $x \in E$. Here we use first the fact, noted in §1, that $T_{2}^{1}(x)$ and $t_{2}^{1}(x)$ are equivalent almost everywhere and next the fact that $J^{2k}F = J^{2k+\beta}f \in t_{2k+\beta}^{1}(x)$ for almost all x (Lemma 4). Since $k \ge 1$,

$$t_{2k+\ell}^1(x) \subset t_2^1(x).$$

Collecting these facts, we see it is enough to prove Theorem 1 for $f \in T^1_a(x)$, $x \in E$, of the form

$$f(x) = \text{p.v.} \int_{E^n} [F(x+z) - F(x)] \frac{dz}{|z|^{n+\beta}}$$

where $F \in L^1_{\beta}$ and $F \in L^1_{\alpha}(x)$ for $x \in E$. For such F, form the decomposition F = G + H of F relative to a closed set $P \subseteq E$ (Lemma 8). We may assume $f \in T^1_{\alpha}(x)$ uniformly for $x \in P$. Consider

$$\int_{|z|>\varepsilon} \left[G(x+z) - G(x) \right] \frac{dz}{|z|^{n+\beta}} = \frac{1}{\alpha - 2} \int_{\varepsilon}^{\infty} \frac{d}{dt} \left(t^{\alpha - 2} \right) dt \int_{\Sigma} \left[G(x+tz') - G(x) \right] dz'$$

$$= \frac{1}{\alpha - 2} \left(t^{\alpha - 2} \int_{\Sigma} \left[G(x+tz') - G(x) \right] dz' \Big|_{\varepsilon}^{\infty}$$

$$- \sum_{j=1}^{n} \int_{\varepsilon}^{\infty} \frac{dt}{t^{2-\alpha}} \int_{\Sigma} z'_{j} G_{j}(x+tz') dz' \right),$$

where $G_j = (\partial/\partial x_j)G$. At $t = \infty$ the integrated term is zero since $\alpha - 2 < 0$. At $t = \varepsilon$ it is $O(\varepsilon^{\alpha - 1}) = o(1)$. Hence

(2.6)
$$g(x) = \lim_{\varepsilon \to 0} \int_{|z| > \varepsilon} \left[G(x+z) - G(x) \right] \frac{dz}{|z|^{n+\beta}}$$

$$= \frac{1}{\alpha - 2} \sum_{j=1}^{n} \int_{\mathbb{R}^{n}} G_{j}(x-z) \frac{z'_{j}}{|z|^{n-(\alpha-1)}}.$$

By Lemma 5, $g \in T^1_\alpha(x)$ uniformly in x for all x. Hence $h = f - g \in T^1_\alpha(x)$ uniformly for $x \in P$. Moreover,

$$h(x) = f(x) - g(x) = \lim_{\varepsilon \to 0} \int_{|z| > \varepsilon} [H(x+z) - H(x)] \frac{dz}{|z|^{n+\beta}}$$

almost everywhere. Since H=0 in P and (2.3) with $\lambda=2$ is finite for almost all $x \in P$,

(2.7)
$$h(x) = \int_{\mathbb{R}^n} \frac{H(x+z)}{|z|^{n+\beta}} dz$$

for almost all $x \in P$, the integral converging absolutely.

To prove Theorem 1, it suffices to show that both

$$\tilde{g}_{\varepsilon}(x) = \int_{|z| > \varepsilon} \left[g(x-z) - g(x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz$$

and

$$\tilde{h}_{\varepsilon}(x) = \int_{|z| > \varepsilon} \left[h(x-z) - h(x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz$$

converge for almost all $x \in P$. Consider first \tilde{g}_{ε} . Since $G \in L_2^2 = J^{\alpha}L_{\beta}^2$, it follows from (2.6) and Lemma 1 with $\Omega \equiv 1$ that $g \in L_{\alpha}^2$. By Lemma 1 again, $\tilde{g}_{\varepsilon}(x)$ converges for almost all x.

Turning to \tilde{h}_{ε} , we have $h \in T_{\alpha}^{1}(x)$, uniformly for $x \in P$, i.e., for $x \in P$

$$\int_{|z| \le \varepsilon} |h(x+z) - h(x) - \sum_{i} z_{i} h_{i}(x)| dz \le M \varepsilon^{n+\alpha}$$

for certain $h_i(x)$. We claim that

(2.8)
$$h_{j}(x) = \int_{E^{n}} H(x-z) \frac{\partial}{\partial z_{j}} \left(\frac{1}{|z|^{n+\beta}} \right) dz$$

for almost all $x \in P$. Observe that the integral in (2.8) converges absolutely for almost all $x \in P$ since $\alpha > 1$ (see (2.3) with $\lambda = 2$). By Lemma 9, $h_j(x)$ is the derivative of h with respect to x_j restricted to P, i.e., if $\varepsilon_j = (0, \ldots, 0, \varepsilon, 0, \ldots, 0)$ with ε as the jth entry, then

$$(h(x+\varepsilon_1)-h(x))/\varepsilon \to h_2(x)$$

as $\epsilon \to 0$ provided x, $x + \epsilon_j \in P$. On the other hand since we may assume (2.7) holds for all $x \in P$, we have for x and $x + \epsilon_j$ in P

$$\frac{h(x+\varepsilon_{j})-h(x)}{\varepsilon} - \int_{E^{n}} H(x-z) \frac{\partial}{\partial z_{j}} \left(\frac{1}{|z|^{n+\beta}}\right) dz$$

$$= \frac{1}{\varepsilon} \int_{E^{n}} H(x-z) \left[\frac{1}{|z+\varepsilon_{j}|^{n+\beta}} - \frac{1}{|z|^{n+\beta}} - \varepsilon \frac{\partial}{\partial z_{j}} \frac{1}{|z|^{n+\beta}}\right] dz$$

$$= \frac{1}{\varepsilon} \int_{|z| \le 2\varepsilon} + \frac{1}{\varepsilon} \int_{|z| \ge 2\varepsilon} = A_{\varepsilon} + B_{\varepsilon}.$$

By the mean-value theorem,

$$|B_{\varepsilon}| \leq c\varepsilon \int_{|z|>2\varepsilon} |H(x+z)| \frac{dz}{|z|^{n+\beta+2}}.$$

If $R(t) = \int_{|z| < t} |H(z+z)| dz$, then $R(t) \le Mt^{n+2}$ by Lemma 8 and

$$|B_{\varepsilon}| \leq c\varepsilon \int_{2\varepsilon}^{\infty} \frac{dR(t)}{t^{n+\beta+2}}.$$

Integrating by parts, $B_{\varepsilon} = O(\varepsilon^{\alpha-1}) = o(1)$.

Even simpler estimates show that the terms

$$\frac{1}{\varepsilon} \int_{|z| < 2\varepsilon} H(x+z) \, \frac{dz}{|z|^{n+\beta}} \quad \text{and} \quad \int_{|z| < 2\varepsilon} H(x+z) \, \frac{\partial}{\partial z_j} \left(\frac{1}{|z|^{n+\beta}} \right) dz$$

of A_{ε} tend to zero with ε . The remaining term of A_{ε} is majorized by

$$\frac{1}{\varepsilon} \int_{|z| < 3\varepsilon} |H(x + \varepsilon_j + z)| \, \frac{dz}{|z|^{n+\beta}} = \frac{1}{\varepsilon} \int_0^{3\varepsilon} \frac{dR_{\varepsilon}(t)}{t^{n+\beta}},$$

where $R_{\varepsilon}(t) = \int_{|z| < t} |H(x + \varepsilon_j + z)| dz \le Mt^{n+2}$ uniformly in ε . That (2.8) holds for almost all $x \in P$ now follows by integrating by parts.

We claim next that

(2.9)
$$\int_{\mathcal{E}^n} \left| h(x+z) - h(x) - \sum_{j} z_j h_j(x) \right| \frac{dz}{|z|^{n+\alpha}} < \infty$$

for almost all $x \in P$. Since Ω is bounded and orthogonal to polynomials of degree 1, $\lim_{\epsilon \to 0} \tilde{h}_{\epsilon}(x)$ exists wherever (2.9) holds. If we assume that (2.7) and (2.8) hold for all $x \in P$, it is enough to show that (2.9) holds for each point of density x of P at which (2.2) is finite for $\lambda = \alpha$ and $\lambda = 1$ and at which (2.3) is finite for $\lambda = \alpha$ and $\lambda = 2$. Let x = 0 be such a point. Then (2.9) for x = 0 will follow if

(2.10)
$$\int_{|z| \le n} |h(z) - h(0)| \le z_j h_j(0) \left| \frac{dz}{|z|^{n+\alpha}} \right|$$

is finite for some $\eta > 0$. In what follows we will denote by c a constant, possibly different in different occurrences, depending only on α and n.

Consider first that part of (2.10) with integration extended only over P. Applying (2.7), (2.8) and interchanging the order of integration,

$$\int_{P} \left| h(z) - h(0) - \sum_{j} z_{j} h_{j}(0) \right| \frac{dz}{|z|^{n+\alpha}}$$

$$\leq \int |H(y)| dy \int_{P} \left| \frac{1}{|y-z|^{n+\beta}} - \frac{1}{|y|^{n+\beta}} + \sum_{j} z_{j} \frac{\partial}{\partial y_{j}} \left(\frac{1}{|y|^{n+\beta}} \right) \right| \frac{dz}{|z|^{n+\alpha}}$$

By the mean-value theorem, the inner integral extended over |z| < |y|/2 is majorized by a constant times

$$\int_{|z| < |y|/2} \frac{|z|^2}{|y|^{n+\beta+2}} \frac{dz}{|z|^{n+\alpha}} = O(|y|^{-n-2}).$$

Since (2.3) with $\lambda = 2$ and x = 0 is finite, we may consider the inner integral above extended over |z| > |y|/2. Since $\alpha > 1$,

$$\int |H(y)| \, dy \int_{|z| > |y|/2} \left| z_j \frac{\partial}{\partial y_j} \left(\frac{1}{|y|^{n+\beta}} \right) \right| \frac{dz}{|z|^{n+\alpha}}$$

$$\leq c \int \frac{|H(y)|}{|y|^{n+\beta+1}} \, dy \int_{|z| > |y|/2} \frac{dz}{|z|^{n+\alpha-1}} = c \int \frac{|H(y)|}{|y|^{n+2}} \, dy.$$

The part

$$\int |H(y)| \, dy \int_{|z| > |y|/2} \frac{1}{|y|^{n+\beta}} \frac{dz}{|z|^{n+\alpha}}$$

can be treated similarly. Since H=0 in P and $|z-y| \ge \delta(y)$ for $z \in P$ and $y \in P'$, the remaining part

$$\int |H(y)| \, dy \int_{P;|z| > |y|/2} \frac{1}{|y-z|^{n+\beta}} \frac{dz}{|z|^{n+\alpha}} \le c \int_{P'} \frac{|H(y)|}{|y|^{n+\alpha}} \, dy \int_{|y-z| > \delta(y)} \frac{dz}{|y-z|^{n+\beta}}$$

$$\le c \int \frac{H(y)}{|y|^{n+\alpha}} \, \delta(y)^{2-\alpha} \, dy < \infty.$$

Now consider the part of (2.10) with integration extended over P'. For any z, write $\omega(z) = h(z) - h(0) - \sum z_j h_j(0)$. With the notation of Lemma 6, let $p_m \in P$ be a point whose distance from each point of K_m is less than a constant (independent of m) times d_m . It is enough to show both

(2.11)
$$\sum_{m} \int_{K_{-}} |\omega(z) - \omega(p_{m})| \frac{dz}{|z|^{n+\alpha}}$$

and

(2.12)
$$\sum_{m} \int_{K_{-}} |\omega(p_{m})| \frac{dz}{|z|^{n+\alpha}}$$

are finite, summations being extended over all m for which K_m intersects $\{z : |z| < \eta\}$. Let δ_m be the distance from K_m to 0. Since 0 is a point of density of P we can choose η so small that $|p_m| \le c\delta_m$ and $\delta_m \le |z| \le c\delta_m$ for $z \in K_m$, with c independent of m. Fix m and write $K = K_m$, $p = p_m$, etc. A term of (2.11) is then majorized by a constant independent of m times

$$\delta^{-n-\alpha} \int_{K} \left| h(z) - h(p) - \sum_{j} (z_{j} - p_{j}) h_{j}(p) \right| dz + d\delta^{-n-\alpha} \sum_{j} \int_{K} \left| h_{j}(p) - h_{j}(0) \right| dz.$$

If we replace integration over K by integration over |z-p| < cd, we only increase this. Moreover, $h \in T^1_\alpha(p)$ uniformly for $p \in P$ and $|h_j(p) - h_j(0)| \le c\delta^{\alpha-1}$ by Lemma 9. Hence the expression above is bounded by a constant independent of m times

$$d^{n+\alpha}/\delta^{n+\alpha}+d^{n+1}/\delta^{n+1}.$$

Since $|K| \ge cd^n$ and $\delta(z) \ge d$ for $z \in K$,

$$\frac{d^{n+\alpha}}{\delta^{n+\alpha}} \le c \int_{K} \frac{\delta^{\alpha}(z)}{\delta^{n+\alpha}} dz \le c \int_{K} \frac{\delta^{\alpha}(z)}{|z|^{n+\alpha}} dz.$$

Treating d^{n+1}/δ^{n+1} in the same way and summing over m, we see (2.11) is finite. Turning to (2.12) we have

$$(2.13) \int_{K} |\omega(p)| \frac{dz}{|z|^{n+\alpha}} \\ \leq \int_{K} \frac{dz}{|z|^{n+\alpha}} \int |H(y)| \left| \frac{1}{|y-p|^{n+\beta}} - \frac{1}{|y|^{n+\beta}} - \sum_{i} p_{i} \frac{\partial}{\partial y_{i}} \left(\frac{1}{|y|^{n+\beta}} \right) \right| dy.$$

The part of (2.13) with integration in the inner integral restricted to |y| > 2|p| is majorized by a constant times

$$\int_{K} \frac{dz}{|z|^{n+\alpha}} \int_{|y|>2|p|} |H(y)| \frac{|p|^{2}}{|y|^{n+\beta+2}} dy.$$

For $z \in K$, |z| and |p| are comparable since both are comparable to δ . Hence the last integral is less than a constant times

$$\int_K \frac{dz}{|z|^{n+\alpha}} \int_{|y|>c|z|} |H(y)| \frac{|z|^2}{|y|^{n+\beta+2}} dy.$$

Summing over m and changing the order of integration, we obtain

$$\int \frac{|H(y)|}{|y|^{n+\beta+2}} \, dy \, \int_{|z| < |y|/c} \frac{dz}{|z|^{n-\beta}} \le c \, \int \frac{|H(y)|}{|y|^{n+2}} \, dy.$$

Consider then the part of (2.13) with integration in the inner integral extended over |y| < 2|p|. The parts

$$\int_{K} \frac{dz}{|z|^{n+\alpha}} \int_{|y| \le 2|y|} \frac{|H(y)|}{|y|^{n+\beta}} dy$$

and

$$\int_K \frac{dz}{|z|^{n+\alpha}} \int_{|y|<2|p|} |H(y)| \, \frac{|p|}{|y|^{n+\beta+1}} \, dy$$

can be handled as above—that is, by replacing |p| by |z|, summing over m and interchanging the order of integration.

Consider finally the part

(2.14)
$$\int_{K} \frac{dz}{|z|^{n+\alpha}} \int_{|y| < 2|p|} |H(y)| \frac{dy}{|p-y|^{n+\beta}}.$$

Let $\overline{K} = \overline{K}_m$ be K expanded concentrically k times, k taken large and independent of m. The part of (2.14) with inner integration over \overline{K} is less than

$$\int_{K} \frac{dz}{|z|^{n+\alpha}} \int_{|p-y| < cd} \frac{|H(y)|}{|p-y|^{n+\beta}} dy = O\left(\frac{d^{n}}{\delta^{n+\alpha}}\right) \int_{0}^{cd} \frac{dR(t)}{t^{n+\beta}}$$

where $R(t) = \int_{|z| < t} |H(p+z)| dz \le Mt^{n+2}$ uniformly in t and $p \in P$. Integrating by parts we obtain the bound $O(d^{n+\alpha}/\delta^{n+\alpha})$ considered earlier.

The remaining part of (2.14) is

$$\int_{K} \frac{dz}{|z|^{n+\alpha}} \int_{|y| \leq 2|p|, y \notin K \cup P} |H(y)| \frac{dy}{|p-y|^{n+\beta}}.$$

Since for $z \in K$, |z| and |p| are comparable and, for $z \in K$ and $y \notin \overline{K}$, |p-y| and |z-y| are comparable, this is less than a constant times

$$\int_{K} dz \int_{|z-y| > c\delta(y)} \frac{|H(y)|}{|y|^{n+\alpha}} \frac{dy}{|z-y|^{n+\beta}}.$$

Adding over m and interchanging the order of integration,

$$\int \frac{H(y)}{|y|^{n+\alpha}} \, dy \int_{|z-y| > c\delta(y)} \frac{dz}{|z-y|^{n+\beta}} \le c \int \frac{|H(y)|}{|y|^{n+\alpha}\delta(y)^{2-\alpha}} \, dy.$$

This completes the proof of Theorem 1 for $1 < \alpha < 2$. The argument for $0 < \alpha < 1$ is somewhat simpler. The analogues of Lemmas 8 and 9 can be found in [4], and those of Lemmas 3 and 5 are clear. The hypothesis (1.1) is not required in Lemma 1 for $0 < \alpha < 1$ and is therefore not needed in the argument for \tilde{g}_{ε} . For \tilde{h}_{ε} one shows that

$$\int_{E^n} |h(x+z) - h(x)| \, \frac{dz}{|z|^{n+\alpha}}$$

is finite almost everywhere in P and need not require (1.1).

3. **Proof of Theorem 2.** We will prove Theorem 2 for $1 < \alpha < 2$ and begin by recalling several lemmas.

LEMMA 1. Let $u \in L^p$, $1 , and let r be a nonnegative integer. If <math>\Omega$ is a spherical harmonic of degree $m \neq 0$, let

$$v(x) = \text{p.v.} \int u(x-z) \frac{\Omega(z')}{|z|^n} dz,$$

and let $u(x, \varepsilon)$ and $v(x, \varepsilon)$, $\varepsilon > 0$, denote the Poisson integrals of u and v. If

$$(\partial^r/\partial\varepsilon^r)u(x,\varepsilon)$$

has a nontangential limit at every $x \in E \subset E^n$ then so has $(\partial^r/\partial \varepsilon^r)v(x, \varepsilon)$ almost everywhere in E.

Lemma 3 is a special case of Theorem 7, of [9, p. 173].

LEMMA 2. Let $F \in L^p$, $1 \le p < \infty$, and let $F(x, \varepsilon)$ be the Poisson integral of F. Suppose $(\partial^r/\partial \varepsilon^r)F(x, \varepsilon)$ has a nontangential limit at each $x \in E$. Then given $\varepsilon > 0$ there is a closed $P \subseteq E$, $|E-P| < \varepsilon$, and a splitting F = G + H such that G has an ordinary F th differential almost everywhere and F for F is F.

For a proof, see [10].

LEMMA 3. Let $H \in L^p$, $1 \le p < \infty$. If for each x in a closed set P, H(x) = 0 and

$$\left(\varepsilon^{-n}\int_{|z|<\varepsilon}|H(x+z)\pm H(x-z)|^p\ dz\right)^{1/p}=O(\varepsilon^r),$$

then for almost all $x \in P$

$$\left(\varepsilon^{-n}\int_{|z|\leq \varepsilon}|H(x+z)|^p\,dz\right)^{1/p}=o(\varepsilon^r).$$

For a proof see [12, p. 91].

LEMMA 4. If $f \in T_{\alpha}^{p}(x_{0})$, $1 < \alpha < 2$, $1 \le p < \infty$ then $F = J^{\beta}f(\alpha + \beta = 2)$ satisfies

$$\left(\varepsilon^{-n}\int_{|z|<\varepsilon}\left|F(x_0+z)-F(x_0-z)-\sum b_jz_j\right|^p\,dz\right)^{1/p}=O(\varepsilon^2)$$

for some $b_j = b_j(x_0)$.

Lemma 4 can be proved by the method of [4, pp. 195–197]. Take $x_0 = 0$ and write

$$F(x) - F(-x) = \int f(z) [G_{\beta}(z-x) - G_{\beta}(z+x)] dz.$$

Thus F(x) - F(-x) differs by a linear term in x from

$$\int \left[f(z) - f(0) - \sum a_j z_j \right] \left[G_{\beta}(z-x) - G_{\beta}(z+x) \right] dz.$$

We claim that

$$\int \left[f(z) - f(0) - \sum a_i z_i \right] G_{\beta}^{(j)}(z) dz$$

converges absolutely if

$$\left(\varepsilon^{-n}\int_{|z|<\varepsilon}\left|f(z)-f(0)-\sum a_jz_j\right|^p\,dz\right)^{1/p}=O(\varepsilon^{n+\alpha}).$$

It is enough to show the part of the integral over |z| < 1 converges absolutely. If

$$R(t) = \int_{|z| < t} \left| f(z) - f(0) - \sum_{j=1}^{\infty} a_{j} z_{j} \right| dz,$$

$$\int_{|z| < 1} \left| f(z) - f(0) - \sum_{j=1}^{\infty} a_{j} z_{j} \right| |G_{\beta}^{(j)}(z)| dz \le c \int_{0}^{1} \frac{dR(t)}{t^{n-\beta+1}}.$$

That this is finite follows by integrating by parts. Hence F(x) - F(-x) differs by a linear term in x from

$$\int [f(z) - f(0) - \sum a_j z_j] [G_{\beta}(z + x) - G_{\beta}(z - x) - 2 \sum x_j G_{\beta}^{(j)}(z)] dz$$

$$= \int_{|z| \le 2|x|} + \int_{|z| \ge 2|x|} = A(x) + B(x).$$

Here

$$|B(x)| \le c \int_{|z| > 2|x|} |f(z) - f(0)| - \sum a_j z_j| \frac{|x|^3}{|z|^{n-\beta+3}} dz$$

$$= c|x|^3 \int_{2|x|}^{\infty} \frac{dR(t)}{t^{n+\alpha+1}} = O(|x|^2).$$

The terms of A(x) majorized by

$$|x| \int_{|z| < 2|x|} |f(z) - f(0)| - \sum_{j=1}^{n} a_j z_j |G_{\beta}^{(j)}(z)| dz = O(|x|) \int_0^{2|x|} \frac{dR(t)}{t^{n-\beta+1}} = O(|x|^2).$$

Hence for $|x| < \varepsilon$,

$$\left| F(x) - F(-x) - \sum b_j x_j \right| \le c\varepsilon^2 + \int_{|z| < 2\varepsilon} \left| f(z) - f(0) - \sum a_j z_j \right| G_\beta(z+x) dz$$

$$+ \int_{|z| < 2\varepsilon} \left| f(z) - f(0) - \sum a_j z_j \right| G_\beta(z-x) dz.$$

For $1 \le p < \infty$, Young's theorem implies

$$\left(\int_{|x|<\varepsilon} \left| F(x) - F(-x) - \sum_{j} b_j x_j \right|^p dx \right)^{1/p}$$

$$\leq c\varepsilon^{2+n/p} + 2\left(\int_{|z|<2\varepsilon} \left| f(z) - f(0) - \sum_{j} a_j z_j \right|^p dz \right)^{1/p} \int_{|z|<3\varepsilon} G_{\beta}(z) dz = O(\varepsilon^{2+n/p}),$$

which proves the lemma.

Let $1 \le \alpha < 2$ and let Ω be a spherical harmonic of degree $m \ge 0$, $m \ne 1$. In proving Theorems 2 and 3, it will be convenient to use an approximation $f(x, \varepsilon)$ to

$$\tilde{f}_{\varepsilon}(x) = \int_{|z| > \varepsilon} \left[f(x-z) - f(x) \right] \frac{\Omega(z')}{|z|^{n+\alpha}} dz$$

which is harmonic in (x, ε) for $x \in E^n$, $\varepsilon > 0$. For this purpose we define

$$f(x, \varepsilon) = c_m^{(\alpha)} \int_{\mathbb{R}^n} f(x+z) [|z|^{\alpha} \Omega(z') e^{-\varepsilon |z|}]^{\alpha} dz$$

where $c_m^{(\alpha)}$ is an appropriate constant depending only on α , n and m. The harmonic function $f(x, \epsilon)$ is considered in [14] where the following facts are proved.

LEMMA 5. For $f \in L^p$, $1 \le p < \infty$,

(a)
$$f(x, \varepsilon) = \int_{E^n} f(x+z)K(z, \varepsilon) dz$$
,

where

$$K(z, \varepsilon) = \omega_m^{(\alpha)} v_m^{(\alpha)} (\varepsilon/|z|) \Omega(-z') |z|^{-n-\alpha},$$

$$\nu_m^{(\alpha)}(r) = \int_0^\infty e^{-rs} s^{\gamma+\alpha+1} J_{m+\gamma}(s) \ ds,$$

 $J_{\nu}(s)$ is the Bessel function of order ν , $\gamma = (n-2)/2$ and $\omega_m^{(\alpha)}$ is a constant depending only on α , n and m;

- (b) $|\nu_m^{(\alpha)}(r)| \leq Ar^{-n-\alpha}$;
- (c) $|\omega_m^{(\alpha)} \nu_m^{(\alpha)}(r) 1| \le A[(mr)^{1/2} + (mr)^{3/2}], A = A_{\alpha, n};$
- (d) $\int_{E^n} K(z, \varepsilon) dz = 0$.

The crucial lemma in proving Theorem 2 is

LEMMA 6. Let $f \in L^p$, $1 \le p < \infty$, and $f \in T^p_{\alpha}(x_0)$, $1 < \alpha < 2$. If $\lim_{\varepsilon \to 0} \tilde{f}_{\varepsilon}(x_0)$ exists and is finite then $f(x, \varepsilon)$ is bounded in every cone $\{(x, \varepsilon) : |x - x_0| < c\varepsilon\}$.

Take $x_0 = 0$ and consider

$$f(0, \varepsilon) - \tilde{f}_{\varepsilon}(0) = \int_{|z| < \varepsilon} [f(z) - f(0)] K(z, \varepsilon) dz$$

$$+ \int_{|z| > \varepsilon} [f(z) - f(0)] \left[K(z, \varepsilon) - \frac{\Omega(-z')}{|z|^{n+\alpha}} \right] dz$$

$$= A_{\varepsilon} + B_{\varepsilon}.$$

Here we have used (d) of Lemma 5. Since $f \in T_a^p(0)$, there are constants a_j , $j = 1, \ldots, n$, such that

$$R(t) = \int_{|z| < t} \left| f(z) - f(0) - \sum a_j z_j \right| dz \le M t^{n+\alpha}.$$

Since Ω is orthogonal to polynomials of degree 1 $(m \neq 1)$, neither A_{ε} nor B_{ε} is changed if we replace f(z) - f(0) in its integrand by $f(z) - f(0) - \sum a_j z_j$. By (b) of Lemma 5,

$$|A_{\varepsilon}| \leq c \varepsilon^{-n-\alpha} R(\varepsilon) = O(1),$$

and by (c) of Lemma 5,

$$|B_{\varepsilon}| \leq c \int_{\varepsilon}^{\infty} \left(\frac{\varepsilon}{t}\right)^{1/2} \frac{dR(t)}{t^{n+\alpha}}$$

Integrating by parts, B_{ε} is bounded.

This shows that $f(0, \epsilon)$ is bounded. To complete the proof, suppose (x, ϵ) satisfies $|x| < c\epsilon$ and consider

$$f(x, \varepsilon) - f(0, \varepsilon) = \int [f(z) - f(0)] [K(z - x, \varepsilon) - K(z, \varepsilon)] dz.$$

Since $\int K(z, \epsilon) dz = \int z_j K(z, \epsilon) dz = 0(2)$, also $\int z_j K(z - x, \epsilon) dz = 0$ and we can majorize the right side above by

$$\int_{|z|<2c\varepsilon} \left| f(z) - f(0) - \sum_j a_j z_j \right| (|K(z-x,\varepsilon)| + |K(z,\varepsilon)|) dz$$

$$+ \int_{|z|>2c\varepsilon} \left| f(z) - f(0) - \sum_j a_j z_j \right| |K(z-x,\varepsilon) - K(z,\varepsilon)| dz$$

$$= A'_{\varepsilon} + B'_{\varepsilon}.$$

As before, A'_{ε} is bounded. To show B'_{ε} is bounded, we must estimate the first order derivatives of $K(z, \varepsilon)$ with respect to z. However,

$$\frac{d}{dr}\nu_m^{(\alpha)}(r) = -\int_0^\infty e^{-rs}s^{\gamma+\alpha+2}J_{m+\gamma}(s) ds.$$

By an argument like that used for Lemma (1.3) of [14],

(3.1)
$$\frac{d}{dr} v_m^{(\alpha)}(r) = O(1) + O(r^s), \qquad s > 0.$$

Hence the first order derivatives of $K(z, \varepsilon)$ are bounded by a constant times $\varepsilon^{s}|z|^{-n-\alpha-1-s}$ for $s \ge 0$.

Since $|x| < c\varepsilon$,

$$|B_{\varepsilon}'| \leq c\varepsilon^{s}|x| \int_{2c\varepsilon}^{\infty} \frac{dR(t)}{t^{n+\alpha+1+s}} \leq c\varepsilon^{s+1} \int_{2c\varepsilon}^{\infty} \frac{dR(t)}{t^{n+\alpha+1+s}} = O(1).$$

This proves Lemma 6.

In particular, if $f \in L^p$, $1 \le p < \infty$, and $f \in T^p_\alpha(x)$ and $\lim_{\varepsilon \to 0} \tilde{f}_\varepsilon(x)$ exists and is finite for $x \in E$, then $f(x, \varepsilon)$ is bounded in each nontangential cone with vertex at a point of E. By a well-known theorem of Calderón (see [1]), $f(x, \varepsilon)$ has a nontangential limit at almost every point of E. If $F = J^p f$, we claim this implies that

(3.2)
$$\int_{E^n} F(x+z)[|z|^2 \Omega(z') e^{-\varepsilon |z|}]^{\wedge} dz$$

has a nontangential limit almost everywhere in E.

For if f is infinitely differentiable and has compact support, (3.2) is

$$\int \hat{F}(z)e^{i(x\cdot z)}|z|^2\Omega(z')e^{-\varepsilon|z|}\ dz = \int \hat{f}(z)\ d\hat{\mu}(z)e^{i(x\cdot z)}|z|^{\alpha}\Omega(z')e^{-\varepsilon|z|}\ dz$$

by Lemma 2(a) of §2 with $\lambda = \beta$. The last integral is $f_1(x, \epsilon)$ for the function $f_1 = f * d\mu$, and the same is true for any $f \in L^p$, $1 \le p < \infty$, by approximating. Hence (3.2) has a nontangential limit almost everywhere in E if both

- (a) $f_1 = f * d\mu \in T^p_\alpha(x)$ and
- (b) $\int_{|z|>\epsilon} [f_1(x-z)-f_1(x)](\Omega(z')/|z|^{n+\alpha}) dz$ converges for almost all $x \in E$.

⁽²⁾ Since $\alpha > 1$, (2) and (3) of Lemma 5 imply $z_j K(z, \epsilon)$ is integrable.

By Lemma 2 of §2, f_1 differs from f by the sum of a linear combination of terms $J^{2k}f$, $k \ge 1$, and a term f * R where R has derivatives up to a preassigned order in all L^p , $1 \le p \le \infty$. Clearly f and f * R satisfy (a) and (b) in E. Now $J^{2k}f \in L_2^p \subset L_\alpha^p$. Hence (b) is true for each $J^{2k}f$ by Lemma 1 of §2. For (a) we use the proof of Lemma (1.5) of [14] for p > 1 and Lemma 4 of §2 for p = 1.

Now suppose $f \in T_{\alpha}^{p}(x)$, $1 \le p < \infty$, $1 < \alpha < 2$, for $x \in E$ and each

$$\int_{|z| > \varepsilon} \left[f(x-z) - f(x) \right] \frac{\Omega_{f}(z')}{|z|^{n+\alpha}} dz$$

converges for $x \in E$ where $\{\Omega_j\}$ is a normalized basis for the spherical harmonics of a fixed degree $m \ne 1$, m = 0 if p = 1. With $F = J^{\beta}f$, each

$$\int_{E^n} F(x+z)[|z|^2 \Omega_j(z) e^{-\varepsilon |z|}]^{\hat{}} dz$$

has a nontangential limit almost everywhere in E. For smooth F and $m \neq 0$, the last integral is a constant times

$$\frac{\partial^2}{\partial \varepsilon^2} \int_{E^n} (T_j F)(x+z) [e^{-\varepsilon |z|}]^{\hat{}} dz$$

where $(T_j F)(x) = p.v.$ $F * \Omega_j(x)/|x|^n$ (see [3, p. 906]). Since T_j is bounded on L^p for p > 1, the same is true for any $f \in L^p$, p > 1.

Applying Lemma 1, each

$$\frac{\partial^2}{\partial \varepsilon^2} \int_{E^n} (T_j^2 F)(x+z) [e^{-\varepsilon |z|}]^{\hat{}} dz$$

has a nontangential limit almost everywhere in E. Since $\sum_{j} \Omega_{j}^{2}$ is constant (see [6, p. 243(2)]), $\sum T_{j}^{2}F = F$. Hence

$$\frac{\partial^2}{\partial \varepsilon^2} \int_{E^n} F(x+z) [e^{-\varepsilon|z|}]^{\hat{}} dz$$

has a nontangential limit almost everywhere in E. If m=0 ($\Omega \equiv 1$) the same is true for $1 \le p < \infty$.

We now decompose F according to Lemma 2. Theorem 2 will follow if $H \in t_2^p(x)$ for almost all $x \in P$. Since $F = J^{\beta} f$ and G satisfy the conclusion of Lemma 4 in P, so does H. Since H = 0 in P,

$$\left(\varepsilon^{-n}\int_{|z|<\varepsilon}|H(x+z)-H(x-z)|^p\ dz\right)^{1/p}=O(\varepsilon^2)$$

for $x \in P$, and Theorem 2 follows from Lemma 3 of this section.

4. Proof of Theorem 3. In this section we will prove Theorem 3 and use the proof to obtain an improvement of Theorem 2. We begin with Theorem 3. Its

proof is similar to that of Theorem 2, but we need a replacement for Lemma 6 of §3.

Hence let $f \in L^p$, $1 \le p < \infty$, and suppose

$$\tilde{f}_{\varepsilon}(x) = \int_{|z| > \varepsilon} \left[f(x - z) - f(x) \right] \frac{\Omega(z')}{|z|^{n+1}} dz$$

converges at $x = x_0$, where Ω is a spherical harmonic of degree $m \ne 1$, m = 0 if p = 1. We claim that

$$f(x_0, \varepsilon) = c_m \int_{\mathbb{R}^n} f(x_0 + z) [|z| \Omega(z') e^{-\varepsilon |z|}]^{\hat{}} dz$$

has a limit as $\varepsilon \to 0$. Here we write $c_m = c_m^{(1)}$, $\omega_m = \omega_m^{(1)}$, $\nu_m = \nu_m^{(1)}$. For taking $x_0 = 0$,

$$f(0, \varepsilon) - \tilde{f}_{\varepsilon}(0) = \omega_{m} \int_{|z| < \varepsilon} [f(z) - f(0)] \nu_{m} \left(\frac{\varepsilon}{|z|}\right) \frac{\Omega(-z')}{|z|^{n+1}} dz$$

$$+ \int_{|z| > \varepsilon} [f(z) - f(0)] \left[\omega_{m} \nu_{m} \left(\frac{\varepsilon}{|z|}\right) - 1\right] \frac{\Omega(-z')}{|z|^{n+1}} dz$$

$$= A_{\varepsilon} + B_{\varepsilon}.$$

We put

$$S(t) = \int_{|z| \le t} [f(z) - f(0)] \Omega(-z') dz.$$

Then $S(t) = O(t^n)$ as $t \to \infty$ and, since $f_{\varepsilon}(0)$ converges, $S(t) = o(t^{n+1})$ as $t \to 0$. However,

$$A_{\varepsilon} = \int_{0}^{\varepsilon} S'(t)G_{\varepsilon}(t) dt$$

and

$$B_{\varepsilon} = \int_{\varepsilon}^{\delta} S'(t) H_{\varepsilon}(t) dt + o(1)$$

for fixed $\delta > \varepsilon$ by Lemma 5(c) of §3. Here of course

$$G_{\varepsilon}(t) = \omega_{m} \nu_{m}(\varepsilon/t) t^{-n-1}, \qquad H_{\varepsilon}(t) = [\omega_{m} \nu_{m}(\varepsilon/t) - 1] t^{-n-1}.$$

Integrating by parts and applying (b) and (c) of Lemma 5 of §3,

$$A_{\varepsilon} = -\int_{0}^{\varepsilon} S(t)G'_{\varepsilon}(t) dt + o(1), \qquad B_{\varepsilon} = -\int_{\varepsilon}^{\delta} S(t)H'_{\varepsilon}(t) dt + o(1).$$

To show A_{ε} and B_{ε} tend to zero, it is therefore enough to show that for s>0

$$G'_{\varepsilon}(t) = O(\varepsilon^{-n-1}t^{-1}), \qquad H'_{\varepsilon}(t) = O(\varepsilon^{s}t^{-n-2-s}).$$

The estimate for H'_{ε} follows from (3.1) and Lemma 5(c) of §3. $G'_{\varepsilon}(t)$ is a combination of $\nu_m(\varepsilon/t)t^{-n-2}$ and $(d/dt)[\nu_m(\varepsilon/t)]t^{-n-1}$. The first of these is $O(\varepsilon^{-n-1}t^{-1})$ and the second is a constant times

$$\varepsilon t^{-n-3} \int_0^\infty e^{-(\varepsilon/t)s} s^{\gamma+3} J_{m+\gamma}(s) \ ds \le c \varepsilon t^{-n-3} \int_0^\infty e^{-(\varepsilon/t)s} s^{2\gamma+3} \ ds,$$

since $|J_{m+\gamma}(s)| \le cs^{\gamma}$ (see [14], Lemma (1.2)). Changing variables our claim follows —i.e., $f(0, \varepsilon)$ has a limit as $\varepsilon \to 0$.

Suppose in addition that

(4.1)
$$\left(\varepsilon^{-n}\int_{|z|\leq \varepsilon}|f(z)+f(-z)-2f(0)|^p\ dz\right)^{1/p}=O(\varepsilon).$$

Consider

$$f(x, \varepsilon) = \int f(z)K(z-x, \varepsilon) dz$$

where K is defined by Lemma 5 of §3 for $\alpha = 1$. If m is odd then $K(z, \epsilon)$ is odd in z and

$$(4.2) \quad f(-x,\,\varepsilon) - f(x,\,\varepsilon) = \frac{1}{2} \int_{\mathbb{R}^n} \left[f(z) + f(-z) - 2f(0) \right] \left[K(z+x,\,\varepsilon) - K(z-x,\,\varepsilon) \right] \, dz.$$

If m is even then $K(z, \varepsilon)$ is even in z and

$$f(x, \varepsilon) + f(-x, \varepsilon) - 2f(0, \varepsilon)$$

$$(4.3) \qquad = \frac{1}{2} \int_{\mathbb{R}^n} \left[f(z) + f(-z) - 2f(0) \right] \left[K(z+x,\,\varepsilon) + K(z-x,\,\varepsilon) - 2K(z,\,\varepsilon) \right] dz.$$

Using (4.1) and arguing as in the last part of the proof of Lemma 6 above, both (4.2) and (4.3) are bounded in any cone $\{(x, \varepsilon) : |x| < c\varepsilon\}$. If, in particular, f satisfies (4.1) for $x \in E$ and $\tilde{f}_{\varepsilon}(x)$ converges for $x \in E$ then, taking subsets of E, we may assume that

- (a) $f(x, \varepsilon)$ is uniformly bounded in (x, ε) for $x \in E$, $0 < \varepsilon < \eta$,
- (b) either $f(x+z, \varepsilon) + f(x-z, \varepsilon)$ or $f(x+z, \varepsilon) + f(x-z, \varepsilon) 2f(x, \varepsilon)$ is uniformly bounded for $x \in E$ and $|z| < \varepsilon$.

By a simple argument, it follows $f(x, \epsilon)$ is bounded in some cone with vertex at each point of density of E, and so $f(x, \epsilon)$ has a nontangential limit almost everywhere in E. Under the hypothesis of Theorem 3, therefore, each

$$\int_{E^n} f(x+z)[|z|\Omega_j(z')e^{-\varepsilon|z|}]^{\hat{}} dz$$

has a nontangential limit almost everywhere in E. If $1 and <math>m \ne 0$, it follows from Lemma 1 above as before that

$$\frac{\partial}{\partial \varepsilon} \int_{\varepsilon^n} f(x+z) [e^{-\varepsilon|z|}]^{\hat{}} dz$$

has a nontangential limit almost everywhere in E. If m=0, the same is true for $1 \le p < \infty$.

By Lemma 2 of §3, there is for $\varepsilon > 0$ a closed $P \subseteq E$, $|E-P| < \varepsilon$, and a splitting f = g + h such that $g \in t_1^p(x)$ for almost all x and h = 0 in P. Since f and g satisfy (4.1) so does h and Theorem 3 follows from Lemma 3 above.

Finally, we remark that the proof just given can be modified to prove Theorem 2 under an apparently weaker hypothesis on f. In fact, the conclusion of Theorem 2 is valid if we replace the hypothesis that $f \in T^p_\alpha(x)$, $x \in E$ by the condition

(i)
$$\left(\varepsilon^{-n}\int_{|z|\leq \varepsilon}|f(x+z)+f(x-z)-2f(x)|^p\ dz\right)^{1/p}=O(\varepsilon^\alpha)$$

if $0 < \alpha < 1$ or

(ii)
$$\left(e^{-n}\int_{|z|\leq \varepsilon} \left| f(x+z) - f(x-z) - 2 \sum_{j=0}^{\infty} a_j(x) z_j \right|^p dz\right)^{1/p} = O(\varepsilon^{\alpha})$$

if $1 < \alpha < 2$, $x \in E$.

We note here that Lemma 4 of §3 remains true if the hypothesis $f \in T^p_\alpha(x_0)$ is replaced by (ii) above for $x = x_0$. If instead (i) holds for $x = x_0$ its analogue is

$$\left(\varepsilon^{-n}\int_{|z|<\varepsilon}|F(x+z)+F(x-z)-2F(x)|^p\,dx\right)^{1/p}=O(\varepsilon),\qquad F=J^{1-\alpha}f.$$

An unpublished result of Stein states that if (ii) holds for $\alpha = 1$ and each $x \in E$ then $f \in t_1^p(x)$ for almost all $x \in E$. Hence assuming (ii) for $\alpha = 1$ does not lead to a strengthening of Theorem 2.

REFERENCES

- 1. A. P. Calderón, On the behavior of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68 (1950), 47-54.
- 2. ——, "Lebesgue spaces of functions and distributions" in *Partial differential equations*, Proc. Sympos. Pure Math., Vol. 4, Amer. Math. Soc., Providence, R. I., 1961, pp. 33-49.
- 3. A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921.
- 4. ——, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225.
 - 5. ——, Unpublished lecture notes.
- 6. A. Erdelyi et al., Higher transcendental functions, Vol. 2, (Bateman manuscript project), McGraw-Hill, New York, 1953.
- 7. Y. Sagher, On hypersingular integrals with complex homogeneity, Thesis, Univ. of Chicago, Chicago, Ill., 1967.
- 8. E. M. Stein, *The characterization of functions arising as potentials*, Bull. Amer. Math. Soc. 67 (1961), 102-104.
- 9. ——, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137-174.
- 10. ——, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Proc. Sympos. Pure Math., Vol. 10, Amer. Math. Soc., Providence, R. I., 1968.
- 11. E. M. Stein and A. Zygmund, On the fractional derivatives of functions, Proc. London Math. Soc. 14A (1965), 249-264.
 - 12. M. Weiss, On symmetric derivatives in L^p, Studia Math. 24 (1964), 89-100.
- 13. M. Weiss and A. Zygmund, On the existence of conjugate functions of higher order, Fund. Math. 48 (1960), 175-187.

- 14. R. L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions. I, Trans. Amer. Math. Soc. 134 (1968), 421-436.
- 15. ——, On hypersingular integrals and Lebesgue spaces of differentiable functions. II, Trans. Amer. Math. Soc. 139 (1969), 37-53.
- 16. A. Zygmund, Trigonometric series, 2nd ed., Vol. 2, Cambridge Univ. Press, Cambridge, 1959.

RUTGERS STATE UNIVERSITY,
NEW BRUNSWICK, NEW JERSEY